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3. 7 Making Choices 

In the previous two sections, we have introduced TSE and IOCV methods as well as explicit and 

implicit procedures. Here, we offer advice on the best choice of combination, keeping in mind 

the requirements of multidimensional problems (including convection) to be discussed in later 

sections. Further, we also keep in mind that coefficients AE and AW are in general not constant. 

This makes the discretized equations nonlinear. 

1. Note that the TSE method casts the governing equations in non-conservative form whereas the 

IOCV method uses the as-derived conservative form. As we shall observe later, this matter is of 

considerable physical significance when convective problems are considered. 

2. In the TSE method, coefficients AE and AW carry little physical meaning. In the IOCV 

method, they represent conductances. 

3. In the TSE method, Scarborough’s criterion may be violated. In the IOCV method, this can 

never happen. 

4. The question of invoking explicit procedure arises only when unsteady-state problems are 

considered. The implicit procedure, in contrast, can be invoked for both unsteady-state as well as 

steady-state problems. In fact, in steady-state problems (Δt = ∞) the implicit procedure is the 

only one possible (Check note). 

5. The explicit procedure imposes restriction on the largest time step to obtain stable solutions. 

The implicit procedure does not suffer from such a restriction. 

In view of these comments, the best choice is to employ the IOCV method with an implicit 

procedure. Throughout this book, therefore, this combination will be preferred. 

Note, 

Some analysts employ an explicit procedure even for a steady-state problem. In this case, 

calculations proceed by introducing a false or imaginary time step. Hence, such procedures are 

called false transient procedures. 



3.8 Dealing with Nonlinearities 

Now that we have accepted a combination of IOCV with the implicit procedure, we restate the 

main governing discretised equation (equations 2.38 and 2.39) but in a slightly altered form: 
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In these equations, the     term is deliberately ignored because it is a problem dependent term. 

The altered form shown in Equation 43 will be useful in dealing with nonlinearities. Also, a 

generalised computer code can be constructed around Equation 43 in such away that preserves 

the underlying physics. The non-linearities  can emanate from three sources: 

1. if     is a function of T  

2. if conductivity k is a function of T or changes abruptly, as in a composite material and/or 

3. boundary conditions at x = 0 and x = L. 

In the following, we discuss methods for dealing with nonlinearities through modification of Sui 

and Spi. 

3.8.1 Nonlinear Sources 

Consider a pin fin losing heat to its surroundings under steady state by convection with heat 

transfer coefficient h. Then,     will be given by  
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where Pi is the local fin perimeter. Therefore, 
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When this equation is included in Equation 43, it is obvious that Ti will now appear on both sides 

of the equation. One can therefore write the total source term as 
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This prescription can be accommodated by updating Sui and Spi as 

                       



                      …………………  51 

Where Sui and Spi on the RHSs are the original quantities given in Equation 47. Note that, in this   

case, the updated Spi is positive and, therefore, there is no danger of rendering APi + Spi 

negative. Thus, Scarborough’s criterion cannot be violated. However, if we considered 

dissipation of heat due to an electric current or chemical reaction (as in setting of cement) then, 

because heat is generated within the medium,   
   = a + b  

 , where b is positive. In this case, Sui 

= Sui + aΔVi and Spi = Spi − b   
   ΔVi . But now, there is a danger of violating Scarborough’s 

criterion and, therefore, one simply sets Sui = Sui +   
    ΔVi and Spi is not updated. Accounting 

for the source term in the manner of Equation 51 is called source term linearization. We shall 

discover further advantages of this form when dealing with the application of boundary 

conditions. 

 

3.8.2 Nonlinear Coefficients 

Coefficients AEi and AWi can become functions of temperature owing to thermal conductivity as 

in k = a + b T + c T
2
. Thus, ki+1/2 in AEi (see Equation 45), 

for example, may be evaluated in two ways: 

ki+1/2 = a + b Ti+1/2 + c T
2

i+1/2,    Ti+1/2 = 0.5(Ti + Ti+1)      …….  52 

or  

ki+1/2 = 0.5 [ k (Ti ) + k (Ti+1) ] .   ………….  53 

Both of these representations are pragmatically acceptable but neither can be justified on the 

basis of the physics of conductance. To illustrate this point, let us consider a composite medium 

consisting of two materials with constant conductivities k1 and k2 (see Figure 7). In this case, we 

lay the grid nodes i and i + 1 in such a way that the cell face i + 1/2 coincides with the location 

where the two materials are joined. Thus, there is a discontinuity in conductivity at the i + ½ 

location. Now, in spite of the discontinuity, the heat transfer Qi+1/2 on either side of i + 1/2 must 

be the same. Therefore, 
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Figure 7. Interpolation of conductivity. 

Eliminating Ti+1/2 from these equations gives 
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We recall, however, that our discretised equation was derived on the basis of linear temperature 

variation between nodes i and i + 1 (see Equation 21). This implies that 
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Comparing Equations 56 and 57, leads to 
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If the cell face were midway between the nodes then this equation would read as 
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These equations suggest that the conductivity at a cell face should be evaluated by a harmonic 

mean to accord with the physics of conductance. We shall regard this as a general practise and 

extend it to the case when thermal conductivity varies with temperature. Thus, instead of using 

either Equation 52 or 53, Equation 58 will be used with ki and ki+1 evaluated in terms of 

temperatures Ti and Ti+1, respectively. Further, note that if conductivity is constant, ki+1/2 = ki = 

ki+1. 

3.8.3 Boundary Conditions 

In practical problems, three types of boundary conditions are encountered: 

1. Boundary temperatures T1 and/or TN are specified. 

2. Boundary heat fluxes q1 and/or qN are specified. 

3. Boundary heat transfer coefficients h1 and/or hN are specified. 



Our interest in this section lies in prescribing these boundary conditions by employing Su and Sp 

for the near-boundary nodes. 

Boundary Temperature Specified 

For the purpose of illustration, consider the i = 2 node, where T1 is specified. Then, 

Equation 43 will read as 
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Where Su2 and Sp2 are already updated to account for any source term. Equation 60 can be left as 

it is but we alter it via a three-step procedure in which we set 
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With this specification, AP2 will now equal AE2 because AW2 is set to zero, but the coefficient of 

  
    remains intact because Sp2 has been updated. Thus, the boundary condition specification is 

accomplished by snapping the boundary connection in the main discretised equation. 

Heat Flux Specified 

Let heat flux q1 be specified at x = 0 (see Figure 8) Then, temperature T1 is unknown and heat 

transfer will be given by 
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From Equation 60, it is clear that one can apply the boundary condition by employing the 

following sequence: 

1. Calculate T1 from Equation 63. 

2. Update Su2 = Su2 + A1 q1 and Sp2 = Sp2 + 0. 

3. Set AW2 = 0. 

The qN -specified boundary condition can be similarly dealt with by altering AEN−1 and Su N−1. 

Heat Transfer Coefficient Specified 

In this case, let h1 be the specified heat transfer coefficient (see Figure 7 again) and let T∞ be the 

fluid temperature adjacent to the surface at x = 0. Then, 
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Therefore, 
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                     Figure 8. Flux boundary condition.  

In this case, the boundary condition can be implemented via the following steps: 

1. Calculate T1 from Equation 65. 

2. Update 
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3. Set AW2 = 0. 

Thus, for all types of boundary conditions, we are able to find appropriate Su and Sp 

augmentations and then set the boundary coefficient of the near-boundary node (AW2 in our 

examples) to zero. The usefulness of this practise will become apparent when we consider the 

issue of convergence enhancement of the iterative solution procedures of 2D equations. 

3.8.4 Underrelaxation 

In a nonlinear problem, if k and/or   
   are strong functions of temperature then, in an iterative 

procedure, as the temperature field changes, the coefficients AP, AE, and AW and the source S 

may change very rapidly from iteration to iteration. In such highly nonlinear problems, the 

iterative solution may yield oscillatory or erratic convergence or may even diverge. Therefore, it 

is desirable to restrict the changes in temperature implied by Equation 43. Such a restriction is 

called underrelaxation. It can be effected by rewriting Equation 43 as  
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Where 0 < α ≤ 1. If α = 1, no underrelaxation will be effected. If α = 0, no change will be 

effected, therefore, this case is not of interest. The underrelaxation can be effected without 

altering the structure of Equation 43 by simply augmenting Su and Sp before every iteration. 

Thus, 
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If the coefficients AEi and AWi were constants and not functions of T then it is also possible to 

take 1 ≤ α < 2. This is called overrelaxation. Typically, compared to the case of α = 1, the 

convergence rate with overrelaxation is faster up to a certain optimum αopt, but for α > αopt, the 

convergence rate again slows down, so much so that it may be even slower than that with α = 1. 

The magnitude of αopt is problem dependent. 

3.9 Methods of Solution 

When coefficients AEi , AWi , and APi are calculated and Sui and Spi are suitably updated to 

account for the effects of source linearization, boundary conditions, and underrelaxation, we are 

ready to solve the set of equations (43) at an iteration level l + 1. There are two extensively used 

methods for solving such equations. 

3.9.1 Gauss–Seidel Method 

The Gauss–Seidel (GS) method is extremely simple to implement on a computer. 

The main steps are as follows: 

1. At a given iteration level l, calculate coefficients AE, AW, AP, Su, and Sp using temperature T
l 

for i = 2 to N − 1 

2. Hence, execute a DO loop: 

 

3. If FCMX > CC, go to step 1. 

The method is also called a point-by-point method because each node i is visited in succession. 

The method is very reliable but requires a large number of iterations and hence considerable 

computer time, particularly when N is large. 

 



 

3.9.2 Tridiagonal Matrix Algorithm 

In the tridiagonal matrix algorithm (TDMA), Equation 43 is rewritten as 

                  Ti = ai Ti+1 + bi Ti−1 + ci ,       …………….     69 

Where, 
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Note that since Spi ≥ 0, ai and bi can only be fractions. Equation 69 represents (N − 2) 

simultaneous algebraic equations. In matrix form, these equations can be written as [A] [T] = 

[C], where the coefficient matrix [A] will appear as shown in Figure 9.  

 

Figure 9. Diagonally dominant matrix [A]. 

 Notice that the coefficient of Ti occupies the diagonal position of the matrix with −ai and −bi 

occupying the neighbouring diagonal positions. All other elements of the matrix are zero. The 

matrix [A] thus has diagonally dominant tridiagonal structure. This structure can be exploited as 

follows. Let 



Ti = Ai Ti+1 + Bi , i = 2, . . . , N − 1.     ………… 71 

Then 

Ti−1 = Ai−1 Ti + Bi−1.     ………….  72 

Now, substituting this equation in Equation 2.69, we can show that 
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Comparison of Equation 73 with Equation 71 shows that 
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Thus, Ai and Bi can be calculated by recurrence. The implementation steps are as follows: 

1. Prepare ai, bi , and ci for i = 2 to N − 1 from knowledge of the     
  distribution. 

2. From comparison of Equations 69 and 71, set A2 = a2 and B2 = c2 (because b2 = 0 via the 

boundary condition specification). Now evaluate Ai and Bi for i = 3 to N − 1 by recurrence using 

Equations 74 and 75. 

3. Evaluate Ti by backwards substitution using Equation 71, that is, from i = N − 1 to 2. Note that 

since we prescribe boundary conditions such that AEN−1 = 0, it follows that AN−1 = 0. 

4. Evaluate fractional change as before and go to step 1 if the convergence criterion is not 

satisfied. The TDMA is essentially a forward elimination (implicit in the recurrence relations) 

and backward substitution procedure in which temperatures at all i are updated simultaneously in 

step 3. Hence, the TDMA is also called a line-by-line procedure to contrast it with the point-by-

point GS procedure introduced earlier. Further, we note that if ai , bi , and ci were constants and 

not functions of T then the TDMA would yield a solution in just one iteration whereas the point-

by-point procedure would require several iterations even when coefficients are constants. 

 

CLASS EXAMPLE. 

1. A rectangular fin of length 2 cm, thickness 2 mm, and breadth 20 cm is attached to a plane 

wall as shown in Figure 6. The wall temperature Tw = 225
O
C and ambient temperature T∞ = 

25
O
C. For the fin material, k = 45 W/m-K and the operating h = 15 W/m

2
-K. Determine the heat 

loss from the fin and its effectiveness. Assume the tip heat loss to be negligible.     

 



                                 

1. Table 4.1: Coefficients in the discretized equation   

 

Table 4.2: Solution by Gauss – Seidel method.  

 

Table 4.3: Solution by TDMA  



        

SOLUTION. 

Given data: 

Length: 2 cm 

Thickness: 2mm 

Breath: 200cm 

Tw: 225
0
C 

T∞ = 25
0
C 

k: 45W/m-k 

h: 15 W/m
2
k 

Solution. 

The exact solution to this problem is 
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Where      √    ⁄  .  

 Perimeter P = 2 × 20 = 40 cm,  

Area A = 20 × 0.2 = 4 cm
2
,  

L = 2 cm. 

Therefore, 

m = 18.257m
−1

 and 

Qloss = 23 W. 

Let N = 7 and Δx = 0.4cm 

AW2 = 45 × 4 × 10
−4

/0.002 = 9  



 AWi = 4.5 for i = 3 to 6. 

AEi = 4.5 for i = 2 to 5  

AE6 = 9. 

The boundary conditions are T1 = 225 and q7 = 0 (negligible tip loss). 

Further, Sui = hi P ΔxiT∞ = 15 × 0.4 × 0.004 × 25 = 0.6  

Spi = 15 × 0.4 × 0.004 = 0.024. 

But T7 = 0 + T6 = T6. 

 Thus, our discretised equations are 

T1 = 225, 

[9 + 4.5 + 0.024] T2 = 4.5 T3 + 9 T1 + 0.6, 

[4.5 + 4.5 + 0.024] Ti = 4.5 Ti+1 + 4.5 Ti−1 + 0.6, i = 3, 4, 5, 

[4.5 + 0.024] T6 = 4.5 T5 + 0.6, 

T7 = T6. 

Note: Conductivity, area, perimeter and heat transfer coefficient are constant i.e 

AE & AW do not change. 

From the converged solution, the fin heat loss is estimated as  

Qloss = AW2 × (T1 − T2) = 9 (225 − 222.42) = 23.26 W.  


